\(\int \frac {\sqrt {2+e x}}{\sqrt {12-3 e^2 x^2}} \, dx\) [914]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 20 \[ \int \frac {\sqrt {2+e x}}{\sqrt {12-3 e^2 x^2}} \, dx=-\frac {2 \sqrt {2-e x}}{\sqrt {3} e} \]

[Out]

-2/3*3^(1/2)*(-e*x+2)^(1/2)/e

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {641, 32} \[ \int \frac {\sqrt {2+e x}}{\sqrt {12-3 e^2 x^2}} \, dx=-\frac {2 \sqrt {2-e x}}{\sqrt {3} e} \]

[In]

Int[Sqrt[2 + e*x]/Sqrt[12 - 3*e^2*x^2],x]

[Out]

(-2*Sqrt[2 - e*x])/(Sqrt[3]*e)

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 641

Int[((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a/d + (c/e)*x)^
p, x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && I
ntegerQ[m + p]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{\sqrt {6-3 e x}} \, dx \\ & = -\frac {2 \sqrt {2-e x}}{\sqrt {3} e} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.45 \[ \int \frac {\sqrt {2+e x}}{\sqrt {12-3 e^2 x^2}} \, dx=-\frac {2 \sqrt {4-e^2 x^2}}{e \sqrt {6+3 e x}} \]

[In]

Integrate[Sqrt[2 + e*x]/Sqrt[12 - 3*e^2*x^2],x]

[Out]

(-2*Sqrt[4 - e^2*x^2])/(e*Sqrt[6 + 3*e*x])

Maple [A] (verified)

Time = 2.55 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.25

method result size
default \(-\frac {2 \sqrt {-3 x^{2} e^{2}+12}}{3 \sqrt {e x +2}\, e}\) \(25\)
gosper \(\frac {2 \left (e x -2\right ) \sqrt {e x +2}}{e \sqrt {-3 x^{2} e^{2}+12}}\) \(30\)
risch \(\frac {2 \left (e x -2\right ) \sqrt {\frac {-3 x^{2} e^{2}+12}{e x +2}}\, \sqrt {e x +2}}{e \sqrt {-3 e x +6}\, \sqrt {-3 x^{2} e^{2}+12}}\) \(58\)

[In]

int((e*x+2)^(1/2)/(-3*e^2*x^2+12)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/(e*x+2)^(1/2)*(-3*e^2*x^2+12)^(1/2)/e

Fricas [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.60 \[ \int \frac {\sqrt {2+e x}}{\sqrt {12-3 e^2 x^2}} \, dx=-\frac {2 \, \sqrt {-3 \, e^{2} x^{2} + 12} \sqrt {e x + 2}}{3 \, {\left (e^{2} x + 2 \, e\right )}} \]

[In]

integrate((e*x+2)^(1/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="fricas")

[Out]

-2/3*sqrt(-3*e^2*x^2 + 12)*sqrt(e*x + 2)/(e^2*x + 2*e)

Sympy [F]

\[ \int \frac {\sqrt {2+e x}}{\sqrt {12-3 e^2 x^2}} \, dx=\frac {\sqrt {3} \int \frac {\sqrt {e x + 2}}{\sqrt {- e^{2} x^{2} + 4}}\, dx}{3} \]

[In]

integrate((e*x+2)**(1/2)/(-3*e**2*x**2+12)**(1/2),x)

[Out]

sqrt(3)*Integral(sqrt(e*x + 2)/sqrt(-e**2*x**2 + 4), x)/3

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.25 \[ \int \frac {\sqrt {2+e x}}{\sqrt {12-3 e^2 x^2}} \, dx=\frac {2 \, {\left (-i \, \sqrt {3} e x + 2 i \, \sqrt {3}\right )}}{3 \, \sqrt {e x - 2} e} \]

[In]

integrate((e*x+2)^(1/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="maxima")

[Out]

2/3*(-I*sqrt(3)*e*x + 2*I*sqrt(3))/(sqrt(e*x - 2)*e)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.90 \[ \int \frac {\sqrt {2+e x}}{\sqrt {12-3 e^2 x^2}} \, dx=-\frac {2 \, \sqrt {3} {\left (\sqrt {-e x + 2} - 2\right )}}{3 \, e} \]

[In]

integrate((e*x+2)^(1/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="giac")

[Out]

-2/3*sqrt(3)*(sqrt(-e*x + 2) - 2)/e

Mupad [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.20 \[ \int \frac {\sqrt {2+e x}}{\sqrt {12-3 e^2 x^2}} \, dx=-\frac {2\,\sqrt {12-3\,e^2\,x^2}}{3\,e\,\sqrt {e\,x+2}} \]

[In]

int((e*x + 2)^(1/2)/(12 - 3*e^2*x^2)^(1/2),x)

[Out]

-(2*(12 - 3*e^2*x^2)^(1/2))/(3*e*(e*x + 2)^(1/2))